FINDINGS OF RESEARCH INTO PHYSICAL-MECHANICAL PROPERTIES OF MIXTURESOF SEWAGE SLUDGE, SOIL AND PHOSPHOGYPSUM TO BE USED AS LAND RECLAMATION AGENTS

Вестник МГСУ 6/2013
  • Smetanin Vladimir Ivanovich - Moscow State University of Environmental Engineering (MGUP) Doctor of Technical Science, Pro- fessor, Chair, Department of Organization and Building Technology of Environmental Engi- neering Objects, Moscow State University of Environmental Engineering (MGUP), 19 Pryanishnikova st., Moscow, 127550, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Zemskov Vladimir Nikolaevich - Moscow State University of Environmental Engineering (MGUP) , Moscow State University of Environmental Engineering (MGUP), 19 Pryanishnikova st., Moscow, 127550, Russian Federation.

Страницы 204-113

The authors argue that intensive construction and development operations generate a large number of idle quarries. Now Moscow Metropolitan area has about 2,000 abandoned quarries and in excess of 150 quarries in operation. Most of them were used to develop various minerals, namely, sand, crushed stone, gravel, peat and other materials.Recovery of abandoned quarries and assurance of their safe condition requires a set of actions to be taken. However, mere reclamation cannot resolve all environmental problems arising after the completion of mining operations. Obviously, the use of undisturbed land areas as household waste landfills is not the best idea from the viewpoint of the environment. Therefore, filling idle quarries with specific types of products is an improved method of reclamation of mines and quarries. This method may solve two problems at once: they are land reclamation and safe waste disposal. Sewage sludge generated by households, as well as industrial enterprises, may serve as the solution.In this paper, the authors study the dependence between the permeability ratio, the carrying capacity of different soil mixtures containing sewage sludge to be used as the reclamation agent in the course of restoration of disturbed territories. The authors also consider dependence of concentration of biogases and the phosphogypsum content in biogases.

DOI: 10.22227/1997-0935.2013.6.204-113

Библиографический список
  1. Smetanin V.I. Rekul’tivatsiya i obustroystvo narushennykh zemel’ [Reclamation and Development of Disturbed Lands]. Moscow, Kolos Publ., 2003, 96 p.
  2. Fosfogips: khranenie i napravlenie ispol’zovaniya kak krupnotonnazhnogo vtorichnogo syr’ya [Phosphogypsum: Storage and Use as Large-tonnage Recycled Material]. Materialy vtoroy Mezhdunarodnoy nauchno-prekticheskoy konferentsii [Materials of the 2nd International Scientific and Practical Conference]. Moscow, OOO «Futuris» Publ., 2010, 192 p.
  3. Mironov V.E., Martynyuk A.A., Kuraev V.N., Kozhenkov L.L. Lesobiologicheskaya rekul’tivatsiya poligonov skladirovaniya fosfogipsa [Forestry Biological Reclamation of Phosphogypsum Landfills]. Moscow, VNIILM Publ., 2006, 120 p.
  4. Metodika rascheta kolichestvennykh kharakteristik vybrosov zagryaznyayushchikh veshchestv v atmosferu ot poligonov tverdykh bytovykh i promyshlennykh otkhodov [Methodology for Analysis of Quantitative Characteristics of Pollutants Emitted into the Atmosphere by Household and Industrial Waste Landfills]. NPP Ekoprom Publ.
  5. Tekhnologicheskiy reglament polucheniya biogaza s poligonov tverdykh bytovykh otkhodov [Process Regulations for Extraction of Biogas at Household Waste Landfills]. Akademiya kommunal’nogo khozyaystva im. K.D. Pamfilova [K.D. Pamfilov Academy of Utility Services]. Moscow, 1989.
  6. Dobycha i utilizatsiya svalochnogo gaza (SG) — samostoyatel’naya otrasl’ mirovoy industrii. [Extraction and Use of Landfill Gas as the Independent Branch of the World Industry]. Ekologicheskie sistemy [Ecological Systems] Company website 2010, no. 5. Available at: http://esco.co.ua. Date of access: 07.06.2013.
  7. Peterson A.E., Speth P.E., Corey R.B., Wright T., Schlecht P.L. Effects of 12 Years of Liquid Digested Sludge Application on the Soil Phosphorus Level. Amer. Soc. Agron. Annu. Meet. 1992, Minneapolis, p. 53.
  8. Water S. A Review of the Agricultural Use of Sewage Sludge: Benefits and Potential Hazards. Korentajer. Agr., 1991, vol. 17, no. 3, pp. 189—196.

Cкачать на языке оригинала

THE CONSTRUCTION OF A COMPOSITION BASED ON MAGNESIA BINDER WITH PEAT

Вестник МГСУ 6/2017 Том 12
  • Lebedeva Natalia Shamilievna - Ivanovo Fire Rescue Academy of State Firefighting Service of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters (IFRA SFS EMERCOM OF RUSSIA) Doctor of Chemical Sciences, Associate Professor, Professor of the Natural Sciences Department, Ivanovo Fire Rescue Academy of State Firefighting Service of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters (IFRA SFS EMERCOM OF RUSSIA), 33 Stroiteley prospect, 153040, Ivanovo, Russian Federation.
  • Nedayvodin Evgeniy Gennadievich - Ivanovo Fire Rescue Academy of State Firefighting Service of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters (IFRA SFS EMERCOM OF RUSSIA) Postgraduate Institute of Development, Ivanovo Fire Rescue Academy of State Firefighting Service of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters (IFRA SFS EMERCOM OF RUSSIA), 33 Stroiteley prospect, 153040, Ivanovo, Russian Federation.

Страницы 642-646

Obtained building material based on magnesia binder with different content of peat (0 to 90 %), on a specially developed technique. As a binder used PMK 87, for mixing mixtures used aqueous solution of magnesium chloride and peat from the Ivanovo region. It were determined such physical and physico-mechanical properties of the investigated material as the compressive strength and the density. The strength characteristics of silicate bricks, ceramic bricks and the investigated material based on magnesia binder and peat was analyzed and compared. It is established that the samples of construction material with content of peat not exceeding 40 wt.% can be attributed to the materials of structural purpose by its compressive strength. Samples of the material with content of the peat 40% have a density 943,75 kg/m3, that provides good heat and sound insulation properties. It is revealed that the solution of the raw material mixture of magnesia binder, peat, the solution of bischofite is optimized to place, and the material gets at least 85% of its strength during 30 days.

DOI: 10.22227/1997-0935.2017.6.642-646

Cкачать на языке оригинала

SANDY SOILS: GEO-ECOLOGICAL EVALUATION OF THEIR STRENGTH DEVELOPMENT PROCESS (IN THE CONTEXT OF THE PHYSICAL CHEMICAL THEORY OF EFFECTIVE STRESSES)

Вестник МГСУ 2/2013
  • Potapov Ivan Aleksandrovich - Scientific and Research Institute of Emergency Healthcare named after N.V. Sklifosovskiy engineer, Scientific and Research Institute of Emergency Healthcare named after N.V. Sklifosovskiy, ; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Potapov Aleksandr Dmitrievich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Head, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Shimenkova Anastasiya Anatol’evna - Moscow State University of Civil Engineering (MGSU) engineer, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 166-180

The authors consider the strength development of sandy soils in the contest of the physical chemical theory of effective stresses. The authors drive particular attention to the assessment of formation of various types of energy contacts in sandy soils. The article is based on the overview of theories developed by several researchers, on the one hand, and on the findings of the experimental research of sandy soils that have different structural patterns, on the other hand. The experiments include both those that were held a while ago and the most recent projects. The authors have proven that the strength of sandy soils is, to a significant extent, driven by their morphological peculiarities that determine their condition in the context of the assessment of their “densitymoisture”. Strength values of sands are dependent on their moisture content both in terms of their maximal shear stress values obtained in the course of shear testing, or their per-unit penetration resistance, penetration values, as well as the inner friction angle and cohesion. The “strength-moisture” is presented as a curvilinear graph that has two upper limits, one for shear tests and the other one for penetration tests. Maximal strength, according to the shear test, is attained for dry sands, if their moisture content is close to the “optimal” value. As for the penetration tests, maximal per-unit resistance to penetration and penetration values are also close to the “optimal” moisture content value. The authors have identified that moisture content is an important factor of strength of sandy soils that demonstrate various structural characteristics.However, the process of formation of structural peculiarities of sands, namely, their morphological parameters and the nature of the surface of sand particles is influenced by the presence of various films on the surface of sand particles. The article represents a preliminary analysis of the theoretical and experimental findings, therefore, any discussions are welcome.

DOI: 10.22227/1997-0935.2013.2.166-180

Библиографический список
  1. Potapov A.D. Nauchno-metodologicheskie osnovy geoekologicheskoy bezopasnosti stroitel’stva [Scientific and Methodological Fundamentals of Geo-ecological Safety of Construction Works]. Moscow, MGSU Publ., 2002, 312 p.
  2. Anan’ev V.P., Potapov A.D. Inzhenernaya geologiya [Engineering Geology]. Moscow, Vyssh. shk. publ., 2008, 346 p.
  3. Potapov A.D. Ekologiya [Ecology]. Moscow, Vyssh. shk. publ., 2005, 328 p.
  4. Platov N.A., Potapov A.D., Lebedeva M.D.. Peschanye grunty [Sandy Soils]. Moscow, ASV Publ., 2008, 186 p.
  5. Potapov A.D., Potapov I.A., Shimenkova A.A. Nekotorye aspekty primenimosti k peschanym gruntam polozheniy fiziko-khimicheskoy teorii effektivnykh napryazheniy [Particular Aspects of Applicability of Provisions of the Physical and Chemical Theory of Effective Stresses to Sandy Soils]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 10, pp. 229—239.
  6. Potapov I.A., Potapov A.D., Shimenkova A.A. Formirovanie raznykh tipov energeticheskikh kontaktov v peschanykh gruntakh v aspekte fiziko-khimicheskoy teorii effektivnykh napryazheniy [Formation of Different Types of Energy Contacts in Sandy Soils in the Framework of the Physicochemical Theory of Effective Stresses]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 11, pp. 210—218.
  7. Potapov I.A., Shimenkova A.A., Potapov A.D. Zavisimost’ suffozionnoy ustoychivosti peschanykh gruntov razlichnogo genezisa ot tipa fil’trata [Dependence of Suffosion Stability of Sandy Soils of Various Geneses on the Type of Filtrate]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 5, pp. 79—86.
  8. Potapov A.D., Potapov I.A., Shimenkova A.A. Rol’ plotnosti — vlazhnosti v peschanykh gruntakh v formirovanii effektivnykh napryazheniyakh s pozitsiy fiziko-khimicheskoy teorii [The Role of the “Density – Moisture” of Sandy Soils in Formation of Efficient Stresses from the Perspective of the Physicochemical Theory]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 12, pp. 104—110.
  9. Senyushchenkova I.M. Teoriya formirovaniya i metody razvitiya urbolandshaftov na ovrazhno-balochnom rel’efe [Theory of Formation and Methods of Development of Urban Landscapes in the Gully Relief]. Moscow, MGSU Publ., 2011, 376 p.
  10. Osipov V.I. Fiziko-khimicheskaya teoriya effektivnykh napryazheniy v gruntakh [Physicochemical Theory of Effective Stresses in Soils]. IGE RAN [Institute of Geo-ecology of the Russian Academy of Sciences]. Moscow, IFZ RAN [Institute of Physics of the Earth (IPE)], 2012, 74 p.
  11. Osipov V.I. Strukturnye svyazi kak osnova otsenki fiziko-mekhanicheskikh svoystv glinistykh porod [Structural Links as the Basis for Assessment of Physical Mechanical Properties of the Glay Rock]. Sovershenstvovanie metodov laboratornykh issledovaniy gruntov pri inzhenernykh izyskaniyakh dlya stroitel’stva : Tezisy dokladov 2 Respublikanskogo soveshchaniya. [Improvement of Methods of Laboratory Testing of Soils as Part of Engineering Surveys for Civil Engineering Purposes. Abstracts of Reports of the 2nd Republican Meeting]. Moscow, Stroyizyskaniya Publ., 1977, pp. 29—40.
  12. Trofimov V.T. Gruntovedenie [Pedology]. Moscow, MGU Publ., Nauka Publ., 2005, 1024 p.
  13. Gol’dshteyn M.N. Mekhanicheskie svoystva gruntov. Osnovnye komponenty grunta I ikh vzaimodeystvie. [Mechanical Properties of Soils. Principal Components of Soil and Their Interaction]. Moscow, Stroyizdat Publ., 1973, 375 p.
  14. Tsytovich N.A. Mekhanika gruntov [Soil Mechanics]. Moscow, Gosstroyizdat Publ., 1963.
  15. Sergeev E.M. Granulometricheskaya klassifikatsiya peskov [Granulometric Classification of Sands]. Vestn. MGU. Ser. biol. i pochv. [Proceedings of Moscow State University. Biology and Soil Series]. 1953, no. 12, pp. 49—56.
  16. Potapov A.D. Morfologicheskoe izuchenie peskov razlichnogo genezisa v inzhenerno-geologicheskikh tselyakh [Morphological Research of Sands of Various Geneses for Engineering Geology Purposes]. Moscow, PNIIIS [Production, Scientific and Research Institute of Engineering Surveying in Construction], 1982.
  17. Rebinder P.A. Strukturno-mekhanicheskie svoystva glinistykh porod i sovremennye predstavleniya fiziko-khimii kolloidov [Structural and Mechanical Properties of Clay Soils and the Present-day Ideas of Physics and Chemistry of Colloids]. Trudy Soveshchaniya po inzhenerno-geologicheskim svoystvam gornykh porod i metodam ikh izucheniya [Collected Works of Geo-engineering Properties of Rocks and Methods of Their Study]. Moscow, AN SSSR Publ., 1956, vol. 1, pp. 31—44.
  18. Mikhaylov N.V., Rebinder P.A. O strukturno-mekhanicheskikh svoystvakh dispersnykh i vysokomolekulyarnykh sistem [Structural Mechanical Properties of Disperse and High Molecular Systems]. Kolloidnyy zhurnal [Colloid Journal]. 1955, vol. 17, no. 2, pp. 112—119.
  19. Ter-Stepanyan G.I. O vliyanii formy i raspolozheniya chastits na protsess sdviga v gruntakh [Influence of Shape and Position of Partickes onto the Process of Shear of Soils]. Izv. AN ArmSSR [News of the Academy of Sciences of Armenian Soviet Socialist Republic]. 1948, vol. 1, no. 2, pp. 167—185.
  20. Gor’kova I.M. Strukturnye i deformatsionnye osobennosti osadochnykh porod razlichnoy stepeni uplotneniya i litifikatsii [Structural and Deformation-related Peculiarities of Sedimentary Rocks That Have Different Compaction and Lithification Values]. Moscow, Nauka Publ., 1966, 128 p.
  21. Durante V.A. Opyt issledovaniya plotnosti peskov metodom glubinnogo zondirovaniya [Practical Research into the Density of Soils Using Method of Deep Sounding]. Trudy Soveshchaniya po inzhenerno-geologicheskim svoystvam gornykh porod i metodam ikh izucheniya [Works of the Meeting Dedicated to the Geo-engineering Properties of Rocks and Methods of Their Study]. Moscow, AN SSSR Publ., 1956, vol. 1, pp. 249—258.
  22. Lysenko M.P. Sostav i fiziko-mekhanicheskie svoystva gruntov [Composition and Physical Mechanical Properties of Soils]. Moscow, Nedra Publ., 1972.
  23. Dudler I.V. Znachenie ponyatiya «plotnost’ — vlazhnost’» dlya izucheniya i otsenki fiziko-mekhanicheskikh svoystv peschanykh gruntov [Meaning of the “Density-Moisture Content” Notion for the Study and Assessment of Physical Mechanical Properties of Sandy Soils]. Voprosy inzhenernoy geologii [Issues of Engineering Geology]. Moscow, MISI Publ., 1977, 7 p.
  24. Platov N.A., Gor’kova I.M. Strukturno-mekhanicheskie osobennosti melkozernistykh i pylevatykh peskov [Structural and Mechanical Peculiarities of Small-grained and Dusty Sands]. Dokl. AN SSSR. Ser.geol. [Reports of the Academy of Sciences of the Union of Soviet Socialist Republics. Geology Series]. 1972, vol. 206, no. 5, pp. 1204—1206.
  25. Rebinder P.A., Segalova E.E. Novye problemy kolloidnoy khimii mineral’nykh vyazhushchikh materialov [ New Problems of Colloid Chemistry of Mineral Viscous Materials]. Priroda Publ., 1952, no. 12, pp. 22—28.
  26. Gor’kova I.M. Teoreticheskie osnovy otsenki osadochnykh porod v inzhenerno-geologicheskikh tselyakh [Theoretical Fundamentals of Assessment of Sedimentary Rocks for Geo-engineering .Purposes]. Moscow, Nauka Publ., 1966, 136 p.
  27. Gor’kova I.M. Fiziko-khimicheskie issledovaniya dispersnykh osadochnykh porod v stroitel’nykh tselyakh [Physical Chemical Research into Disperse Sedimentary Soils for Construction Purposes]. Moscow, Stroyizdat Publ., 1975, 151 p.
  28. Platov N.A., Gor’kova I.M. O prirode prochnosti melko- i srednezernistykh peschanykh porod razlichnogo geneticheskogo tipa [Character of Strength of Small and Mid-size Sandy Rocks of Different Genetic Origin]. Kolloidnyy zhurnal [Colloid Journal]. 1973, vol. 35, no. 1, pp. 57—62.
  29. Platov N.A., Gor’kova I.M. Tipy deformatsionnogo i reologicheskogo povedeniya peschanykh porod [Type of Deformation-related and Rheological Behavirour of Sandy Rocks]. Dokl. AN SSSR. Ser.geol. [Reports of the Academy of Sciences of the Union of Soviet Socialist Republics. Geology Series]. 1975, vol. 222, no. 2, pp. 456—458.
  30. Tsekhomskiy A.M. O stroenii i sostave plenki na zernakh kvartsevykh peskov [Structure and Composition of the Film Covering Grains of Quartz Sands]. Kora vyvetrivaniya [Residual Soil]. Moscow, 1959, AN SSSR Publ., no. 3, pp. 293—312.
  31. Lemmleyn G.G., Knyazev V.S. Opyt izucheniya oblomochnogo kvartsa [Research into Fragmental Quartz]. AN SSSR Publ., 1951, no. 4, pp. 99—101.
  32. Ziangirov R.S. Ob”emnaya deformiruemost’ glinistykh gruntov [3D Deformability of Clay Soils]. Moscow, Nauka Pbl., 1979, p. 164.
  33. Fadeev P.I. Peski SSSR [Sands of the USSR]. Moscow, MGU Publ., 1951, Part 1, 290 p.
  34. Deer W.A., Howie R.A., Zussman I. Rock-forming Minerals. 4. Framework Silicates. New York, Wiley, 1963.
  35. Baron L.I. Kharakteristika treniya gornykh porod [Characteristic of Rock Friction]. Moscow, Nauka Publ., 1967.
  36. Maslov N.N., Kotov M.F. Inzhenernaya geologiya [Engineering Geology]. Moscow, Stroyizdat Publ., 1971. 340 ð.
  37. Kabai J. The Compatibility of Sands and Sandy Gravels. Techn. University Budapest, 1968, vol. 63.

Cкачать на языке оригинала

THE ROLE OF THE "DENSITY - MOISTURE" OF SANDY SOILS IN FORMATION OF EFFICIENT STRESSES FROM THE PERSPECTIVE OF THE PHYSICOCHEMICAL THEORY

Вестник МГСУ 12/2012
  • Potapov Aleksandr Dmitrievich - Moscow State University of Civil Engineering (MGSU) Doctor of Technical Sciences, Professor, Head, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Potapov Ivan Aleksandrovich - Scientific and Research Institute of Emergency Healthcare named after N.V. Sklifosovskiy engineer, Scientific and Research Institute of Emergency Healthcare named after N.V. Sklifosovskiy, ; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Shimenkova Anastasiya Anatol'evna - Moscow State University of Civil Engineering (MGSU) engineer, Department of Engineering Geology and Geoecology, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 104 - 110

The paper deals with the formation of limiting bulk densities of sandy soils of different origin against different values of humidity and varying structural features. The authors have identified that the optimum moisture content is typical for sands and clays exposed to mechanical compaction. The nature of this dependence is different from the one between the density and humidity of clay soils. These differences are driven by the peculiarities of formation of bound water shells in the event of low humidity. A linear dependence between the optimal humidity of sands and maximal molecular moisture capacity has been identified. The authors make a statement based on the proven de
pendence between the maximal molecular moisture capacity and the morphology of sands. Their statement is that the formation of bound water shells in the low humidity environment is dependent not only on the fineness of particles, but, to a higher extent, on the peculiarities of the shape and the nature of the surface of sand grains. Another important factor of impact on the density of sandy soils in the natural environment consists in their humidity.
Multiple researchers believe that the correlation between density and humidity of sands is to be the subject of research. It is noteworthy that limit densities of air-dried sands are to be assessed. Therefore, any sands have some particular bound water content, and the lower the intensity of treatment of sand particles, the higher the water content. The findings demonstrate that in most cases typical coagulatory and transitory contacts of non-saturated sands are to be considered in line with the ideas expressed by V.I. Osipov, as the above contacts determine the formation of effective stresses from the prospective of the physicochemical theory.

DOI: 10.22227/1997-0935.2012.12.104 - 110

Библиографический список
  1. Osipov V.I. Fiziko-khimicheskaya teoriya effektivnykh napryazheniy v gruntakh [Physicochemical Theory of Effective Stresses in Soils]. IGE RAN [Institute of Geo-ecology of the Russian Academy of Sciences]. Moscow, IFZ RAN [Institute of Physics of the Earth (IPE)], 2012, 74 p.
  2. Potapov A.D., Potapov I.A., Shimenkova A.A. Nekotorye aspekty primenimosti k peschanym gruntam polozheniy fi ziko-khimicheskoy teorii effektivnykh napryazheniy [Particular Aspects of Applicability of Provisions of the Physical and Chemical Theory of Effective Stresses to Sandy Soils]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 10, pp. 229—239.
  3. Potapov I.A., Potapov A.D., Shimenkova A.A. Formirovanie raznykh tipov energeticheskikh kontaktov v peschanykh gruntakh v aspekte fi ziko-khimicheskoy teorii effektivnykh napryazheniy [Formation of Different Types of Energy Contacts in Sandy Soils in the Framework of the Physicochemical Theory of Effective Stresses]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 11, pp. 210—218.
  4. Potapov I.A., Shimenkova A.A., Potapov A.D. Zavisimost’ suffozionnoy ustoychivosti peschanykh gruntov razlichnogo genezisa ot tipa fi l’trata [Dependence of Suffosion Stability of Sandy Soils of Various Geneses on the Type of Filtrate]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 5, pp. 79—86.
  5. Potapov A.D. Morfologicheskoe izuchenie peskov razlichnogo genezisa v inzhenerno-geologicheskikh tselyakh [Morphological Research of Sands of Various Geneses for Engineering Geology Purposes]. Moscow, PNIIIS [Production, Scientific and Research Institute of Engineering Surveying in Construction], 1982, 243 p.
  6. Dudler I.V. Znachenie ponyatiya «plotnost’ — vlazhnost’» dlya izucheniya i otsenki fi ziko-mekhanicheskikh svoystv peschanykh gruntov [Meaning of the Notion of “Density-Humidity” in the Mastering and Assessment of Physical-mechanical Properties of Sandy Soils]. Voprosy inzhenernoy geologii [Issues of Engineering Geology]. Moscow, MISI Publ., 1977, 7 p.
  7. Anan’ev V.P., Potapov A.D. Inzhenernaya geologiya [Engineering Geology]. Moscow, Vyssh. shk. publ., 2008, 260 p.
  8. Lysenko M.P. Sostav i fiziko-mekhanicheskie svoystva gruntov [Composition and Physical-Mechanical Properties of Soils]. Moscow, Nedra Publ., 1972, 272 p.
  9. Kabai J. The Compatibility of Sands and Sandy Gravels. Techn. University Budapest. 1968, vol. 63, 6 p.
  10. Trofimov V.T., editor. Gruntovedenie [Soil Science]. Moscow, Nauka Publ., 2005, 1024 p.

Cкачать на языке оригинала

Investigation of rational types of light concrete for external walls in conditions of hot climate

Вестник МГСУ 10/2018 Том 13
  • Hoshim R. Ruziev - Bukhara Engineering Technology Institute , Bukhara Engineering Technology Institute, 15 K. Murtazaev st., Bukhara, 200100, Uzbekistan.

Страницы 1211-1219

Introduction. The paper presents theoretical and experimental studies of the improvement of the structure of lightweight concrete, which provides the maximum value of the attenuation of the amplitude of external air temperature fluctuations during the passage of heat flow through the walls and the reduction of thermal conductivity, the results of the 3-factor experiment on determining the rational structure of claydite concrete and the methods for their processing. To determine the purposeful structure of the composition of lightweight concrete and its thermal conductivity, a complex of research works was carried out at the Central Research Institute for Housing, applied to lightweight concrete for exterior walls. The main optimization criterion was the maximum reduction in thermal conductivity while providing the necessary strength, durability and waterproofness. The purpose of this work is theoretical research and experimental substantiation of methods for improving the structure of lightweight concrete used for a hot climate with improved functional performance. Materials and methods. As material a claydite gravel with bulk density p = 400 kg/m3 of Lianozovsky plant (Moscow) was used, at a ratio of 40 % of the fraction 5-10 mm and 60 % of the fraction 10-20 mm and a Portland cement of the brand “400” of the Voskresensky plant, not plasticized. The water flow rate was varied for 10 seconds, to ensure the mixture to be vibropacked.As a foam generating agent and plasticizer, the “Saponified wood resin” (SDO) was used in a 5 % aqueous solution. The methods were adopted in accordance with the Recommendation on the technology of factory production and quality control of lightweight concrete and large-panel constructions of residential buildings. M. CNIIEP dwelling, 1980. In the department of the lightweight concrete application at CNIIEP of dwelling, a method for the purposeful formation of the structure and composition of lightweight concrete, which provides a set of physic-technical, technological and technical-economic requirements, was developed. Results. Calculations are reduced to obtaining mathematical models of dependence of strength R, density ρ, thermai conductivity λ and other indicators of concrete characteristics from initial factors in the form of regression equations. Based on the equations obtained, it was possible to determine the expedient composition of lightweight concrete, which, in combination with the operational characteristics, provides comparable results of the technical and economic characteristics of a single-layer structure from the projected type of lightweight concrete. Conclusions. 1. An improved composition of the structural and heat insulating lightweight concrete for the load-bearing part of the structure, providing its high thermal stability by chemical additives and low consumption of porous sand, was developed. An algorithm for selecting its composition on computer is made. 2. The conducted researches in the field of design of external enclosing structures for hot climate conditions have shown that: single-layer exterior wall constructions with massiveness of D ≤ 4 provide minimum allowable values of heat flux attenuation and temperature fluctuation amplitude on the inner wall surface.

DOI: 10.22227/1997-0935.2018.10.1211-1219

Скачать статью

Результаты 1 - 5 из 5