RESEARCH OF BUILDING MATERIALS

FEATURES OF HEAT TREATMENT OF HIGHLY POROUS LAYERED MATERIALS

Вестник МГСУ 5/2013
  • Zhukov Aleksey Dmitrievich - Moscow State University of Civil Engineering (National Research University) (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Composite Materials Technology and Applied Chemistry, Moscow State University of Civil Engineering (National Research University) (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Smirnova Tat’yana Viktorovna - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Technology of Finishing and Insulation Materials, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Chugunkov Aleksandr Viktorovich - Moscow State University of Civil Engineering (MGSU) postgraduate student, Department of Technolo- gy of Finishing and Insulation Materials, Director, Department of Inspection of Buildings, Com- prehensive Research Laboratory of Geotechnical Engineering, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.
  • Khimich Anastasiya Olegovna - Moscow State University of Civil Engineering (MGSU) student, Institute of Construction and Architecture, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation.

Страницы 97-102

Effectiveness of thermal insulation products is determined by a set of criteria that can be expressed in terms of energy costs: reduction of the cost of heating (the main criterion), energy consumption in the course of construction, energy consumption in the course of production of materials having pre-set properties, and service durability of the material.On the one hand, service durability (as a property) is generated in the course of material production, and on the other hand, it depends on the conditions that the material is exposed to in the course of any construction process. The same parameter affects energy-related criteria. Insulation replacement or unplanned repairs add supplementary energy costs.The manufacturing process of thermal insulation materials contemplates processing of a significant amount of non-renewable natural resources, namely, fuel combustion. Optimization of these costs is necessary and possible through appropriate organization of processes, including the process of heat treatment of products.Layered materials can improve the product performance and durability. Production and heat treatment of mineral fibers are the most energy-consuming steps of the mineral wool production. Optimization of these processes can involve significant economic effects.

DOI: 10.22227/1997-0935.2013.5.97-102

Библиографический список
  1. Gagarin V.G. Teplozashchita i energeticheskaya effektivnost’ v proekte aktualizirovannoy redaktsii SNIP «Teplovaya zashchita zdaniy» [Thermal Protection and Energy Efficiency in Draft Revised Version of Construction Norms and Rules “Thermal Protection of Buildings”]. Energoeffektivnost’ XXI vek: III Mezhdunarodnyy kongress. [3d International Congress. Energy Efficiency 21st Century]. St.Petersburg, 2011, pp. 34—39.
  2. Khlevchuk V.R., Bessonov I.V. O raschetnykh teplofizicheskikh pokazatelyakh mineralovatnykh plit. Problemy stroitel’noy teplofiziki, sistem mikroklimata i energosberezheniya v zdaniyakh [Analytical Thermophysical Parameters of Mineral Wool Panels. Problems of Thermal Physics, Climate Systems and Energy Efficiency in Buildings]. Moscow, NIISF Publ., 1998, pp. 127—135.
  3. Zhukov A.D. Tekhnologiya teploizolyatsionnykh materialov [Technology of Thermal Insulation Materials]. Moscow, MGSU Publ., 2011, Part 1 — 395 p., Part 2 — 195 p.
  4. Bli?d?ius R., Samajauskas R. The Peculiarities of Determining Thermal Conductivity Coefficient of Low Density Fibrous Materials. Materials Science. MED?IAGOTYRA, 2001, 345 p.
  5. Lienhard J.H. IV, Lienhard J.H. V. A Heat Transfer Text Book. Cambridge, MA, Phlogiston Press, 2003, 749 p.
  6. Zhukov A.D. Smirnova T.V. Gidrodinamika potoka teplonositelya v mineralovatnom kovre [Hydrodynamics of Heat Transfer Agent Flow inside Mineral Wool Mats]. Nauka. Stroitel’stvo. Obrazovanie. [Science. Construction. Education.] 2012, no. 1. Available at: http://www.nso-journal.ru.
  7. Zhukov A.D., Chugunkov A.V., Gudkov P.K. Modelirovanie i optimizatsiya tekhnologii gazobetona [Modeling and Optimization of the Aeroconcrete Technology]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2012, no. 4, pp. 155—159.
  8. Zhukov A.D., Smirnova T.V., Khimich A.O., Eremenko A.O., Kopylov N.A. Raschet parametrov teplovoy obrabotki mineralovatnykh izdeliy s primeneniem EVM [Computer-based Analysis of Thermal Treatment Parameters Applicable to Mineral Wool Products]. Stroitel`stvo: nauka i obrazovanie [Construction: Science and Education]. 2013, no. 1. Available at: http://www.nso-journal.ru.
  9. Kurochkin V.A., Zhukov D.V., Shelepov E.P. Modelirovanie promyshlennogo rezhima konvektivnoy sushki izdeliy v protsesse eksperimenta [Modeling of Industrial Mode of Convective Drying of Products in the Course of an Experiment]. Stroitel’nye materialy [Construction Materials]. 1979, no. 1, pp. 27—32.
  10. Okorokov A.M., Zhukov D.V. Issledovanie i raschet protsessa teplovoy obrabotki mineralovatnogo kovra metodom produvki teplonositelya [Research into and Analysis of Mineral Wool Heat Treatment by Blowing the Heat Transfer Agent]. Stroitel’nye materialy [Construction Materials]. 1982, no. 7, pp. 32—37.
  11. Petrov-Denisov V.G., Maslennikov L.A. Protsessy teplo- i vlagoobmena v promyshlennoy teploizolyatsii [Heat and Moisture Transfer in Industrial Insulation]. Moscow, Energoizdat Publ., 1983, 192 p.

Cкачать на языке оригинала

USING SOLAR ENERGY IN HEAT TREATMENT ОF CONCRETE IN THE REPUBLIC OF KAZAKHSTAN

Вестник МГСУ 10/2012
  • Aruova Lyazat Boranbaevna - Kyzylorda State University Named after Korkyt Ata (Korkyt Ata KSU) Doctor of Technical Sciences, Professor, Department of Architecture and Construction, Kyzylorda State University Named after Korkyt Ata (Korkyt Ata KSU), 29A Ayteke bi str., Kyzylorda, 120014, Kazakhstan; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Dauzhanov Nabi Tokmurzaevich - Kyzylorda State University named after Korkyt Ata Candidate of Technical Sciences, Associate Professor, 87015660731, Kyzylorda State University named after Korkyt Ata, 29A Ayteke bi st., Kyzylorda, 120014, Kazakhstan; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 142 - 146

In the article, the authors consider heat and mass transfer inside reinforced concrete structures, and their impact on the mechanical properties of the latter.
The authors argue that humidity is an important factor of concrete hardening. As a rule, concrete-to-environment mass transfer, as well as the mass transfer inside concrete products, cause fast dehydration in the course of hardening, thus, leading to the insufficiency of strength. This phenomenon may be exemplified by prefab concrete products hardened in the hot and dry climate. The findings of the authors constitute a simple though efficient solution that consists in the employment of solar chambers equipped with an intermediate, or supplementary, heat carrier. Solar chambers are to be installed inside production premises.
Reinforced concrete products manufactured in accordance with the technology proposed by the authors feature high strength and durability. The concrete structure and properties (namely, compressive strength, tensile strength, modulus of elasticity and cold resistance) even exceed those of the concrete products hardened within 28 days in the regular temperature and humidity environment.
Theoretical principles and experimental research findings of the authors have been invested into the year-round technology of manufacturing of reinforced concrete products inside production premises, where products are treated by the solar energy and a supplementary source of energy. The concrete mix is poured into the form and compacted there; thereafter, the product surface is smoothed. Immediately after that a cover is fixed onto the form and tightly attached to the form walls. The process is to be initiated at 8 a.m. to maximize the period of solar energy consumption and to accelerate the process of concrete hardening.

DOI: 10.22227/1997-0935.2012.10.142 - 146

Библиографический список
  1. Abhat A., Aboul–Enein S., Malatidis N. Heat-of-fusion Storage Systems for Solar Heating Applications in Lifter, no. 132, pp. 157—172.
  2. Cease M.E., White D.H. Emulsification of Thermal Energy Storage Materials in an Immiscible Fluid. International Journal of Energy Resources. 1983, no. 2, vol. 7, p. 25.
  3. Lu Changgeng. Industrial Production of Concrete Components in China. Betonwerk+Fertigteil-Technik (Concrete Precasting Plant and Technology), 1986, no. 5, p. 56.
  4. Malhotra V.M. In-place Evaluation of Concrete. Jour. of Constr. Div. Proc. of Am. Soc. of Civ. Engr. 1975, vol. 101, p. 45.
  5. Krylov B.A., Zasedatelev I.B., Malinskiy E.N. Izgotovlenie sbornogo zhelezobetona s primeneniem gelioform [Production of Prefab Reinforced Concrete Using Solar Hardening Forms]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1984, no. 3, pp. 17—18.
  6. Krylov B.A., Chkuaselidze L.G., Topil’skiy G.V., Rybasov V.P. Vododispersionnye plenkoobrazuyushchie sostavy dlya betona v usloviyakh sukhogo zharkogo klimata [Water-dispersible Film-forming Concrete Compositions in Hot Dry Climates]. Beton i zhelezobeton [Concrete and Reinforced Concrete]. 1992, no. 6, p. 15.
  7. Krylov B.A., Zvezdov A.I. Vliyanie temperatury na ego strukturu i tverdenie [Temperature Influence on Concrete Structure and Hardening]. International Symposium in Japan E&FN Spook. 1995, vol. 2, pp. 917—925.
  8. Abhat A. Low Temperature Latent Heat Thermal Energy Storage. Heat Storage Materials. Solar Energy. 1983, no. 4, vol. 30, p. 65.
  9. Commission 42-CEA. Properties Set Concrete at Early Ages. State-of-the-art-report. Materiaux et Constructions. 1981, no. 84, vol. 14, p. 15.
  10. Kalt A.C. Speicherung Thermischer Energie in Anlagen dur Nulzung der Sonnenenergie. Oel+Gasfeuerung. 1980, no. 11, vol. 25, p. 55.

Cкачать на языке оригинала

Результаты 1 - 2 из 2