TECHNOLOGY OF CONSTRUCTION PROCEDURES. MECHANISMS AND EQUIPMENT

Methodical approaches to waste co-recycling technologies development

Вестник МГСУ 5/2014
  • Pugin Konstantin Georgievich - Perm National Research Polytechnic University (PNRPU) Candidate of Technical Sciences, Associate Professor, Department of Automobiles and Production Machines, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Vaysman Yakov Iosifovich - Perm National Research Polytechnic University (PNRPU) Doctor of Medical Sciences, Professor, Scientific Supervisor, Department of Environmental Protection, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 78-90

Currently, the waste industry is being perceived more as a raw material for producing the desired products. That is the result of waste production expanding and the improvement of processing of materials technology. Most part of waste recycling falls on construction technology. If waste recycling is used in building constructions there may be possible negative effects of heavy metals emission. Large waste volumes make it possible to develop heterogeneous waste recycling effects such as mutual neutralization of synergy and the improvement of consumer qualities of the obtained materials. Basing on summarized results of waste heterogeneous co-recycling research it was possible to find ways of construction materials potential preparation. Methodological principles are based on best available technologies principles. The presented paper sets targets, methods and tools to achieve them. The qualitative and quantitative characteristics may vary depending on the tasks to be implemented. It was stated that the effective counteraction of wastes reduced the emission of heavy metals on the account of mutual neutralization and the shift of water-soluble composition to fix form. The obtained material in relation to its consumer properties is as good as its raw material analogy.

DOI: 10.22227/1997-0935.2014.5.78-90

Библиографический список
  1. Leont'ev L.I. Net dal'neyshemu nakopleniyu tekhnogennykh otkhodov metallurgii [Say No to Further Accumulation of Ferrous Waste]. Ekologiya i promyshlennost' Rossii [Ecology and Production Sector of Russia]. 2013, no. 1, pp. 2—3.
  2. Reich J., Pasel C., Herbell J., Luckas M. Effects of Limestone Addition and Sintering on Heavy Metal Leaching from Hazardous Waste Incineration Slag. Waste Management. 2002, vol. 22, no. 3, pp. 315—326. DOI: 10.1016/S0956-053X(01)00020-4.
  3. Motz H., Geiseler J. Products of Steel Slags an Opportunity to Save Natural Resources. Waste Management. 2001, no. 21 (3), pp. 285—293.
  4. Lind B.B., Fallman A.M., Larsson L.B. Environmental Impact of Ferrochrome Slag in Road Construction. Waste Management. 2001, no. 21 (3), pp. 255—264.
  5. Downey J.P., Twidwell L.G. Ferrihydrite and Aluminum-Modified Ferrihydrite Enhanced High Density Sludge Treatment for Removing Dissolved Metals from Acid Rock Drainage. Global Symposium on Recycling, Waste Treatment and Clean Technology. REWAS 2008, TMS, 10, vol. 3, pp. 1289—1299.
  6. Young C., Downey J. Splash Technology: Applying the Design-for-Recyclability Concept to Spent Potlining Management. Global Symposium on Recycling, Waste Treatment, and Clean Technology. REWAS 2008, TMS, 10, vol. 1, pp. 254—260.
  7. Pugin K.G., Vaysman Ya.I. Metodicheskie podkhody k razrabotke i identifikatsii nailuchshikh dostupnykh tekhnologiy na primere ispol'zovaniya shlakov chernoy metallurgii [Methodological Approaches to Development and Identification of the Best Available Technologies through the Example Use of Ferrous Slags]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2013, no. 10, pp. 183—195.
  8. Reuter M., Xiao Y., Boin U. Recycling and Environmental Issues of Metallurgical Slags and Salt Fluxes. VII International Conference on Molten Slags Fluxes and Salts. The South African Institute of Mining and Metallurgy, 2004, pp. 349—356.
  9. Pugin K.G., Vaysman Y.I. Methodological Approaches to Development of Ecologi-cally Safe Usage Technologies of Ferrous Industry Solid Waste Resource Potential. World Applied Sciences Journal, 2013, vol. 22, Special Issue on Techniques and Technologies, pp. 28—33.
  10. Woolley G.R., Goumans J.J.J.M., Ainright P.J. (Eds.). Waste Materials in Construction. WASCON 2000. Proceedings of the International Conference on the Science and Engineering of Recycling for Environmental Protection. Pergamon Press, vol. 1, Harrogate, England, pp. 438—448.
  11. Qasrawi H., Shalabi F., Asi I. Use of Low CaO Unprocessed Steel Slag in Concrete as Fine Aggregate. Construction and Building Materials. 2009, no. 23, pp. 1118—1125. DOI: 10.1016/j.conbuildmat.2008.06.003.
  12. Alizadeh R., Chini M., Ghods P., Hoseini M., Montazer Sh., Shekarchi M. Utilization of Electric Arc Furnace Slag as Aggregates in Concrete — Environmental Issue. 6-th CANMET/ACI International Conference on Recent Advances in Concrete Technology. Bucharest, Romania, June 2003, pp. 451—464.
  13. Shekarchi M., Soltani M., Alizadeh R., Chini M., Ghods P., Hoseini M., Montazer Sh. Study of the Mechanical Properties of Heavyweight Preplaced Aggregate Concrete Using Electric Arc Furnace Slag as Aggregate. International Conference on Concrete Engineering and Technology. Malaysia, 2004.
  14. Gerald M. Weinberg. Quality Software Management: Systems Thinking. Dorset House, 1992, 336 p.
  15. Freedman Daniel P., Weinberg Gerald M. Handbook of Walkthroughs, Inspections, and Technical Reviews. Evaluating Programs, Projects, and Products. Dorset House, 1990, 464 p.
  16. Kazman R., Bass L. Making Architecture Reviews Work in the Real World. IEEE Software. January/February 2002, pp. 76—73. DOI: 10.1109/52.976943.
  17. Cheremnykh S.V., Semenov I.O., Ruchkin V.S. Strukturnyy analiz sistem: IDEFtekhnologii [Structural Analysis of Systems: IDEF-Technologies]. Moscow, Finansy i statistika Publ., 2001, 208 p.
  18. Pugin K.G., Kalinina E.V., Khalitov A.R. Resursosberegayushchie tekhnologii stroitel'stva asfal'tobetonnykh dorozhnykh pokrytiy s ispol'zovaniem otkhodov proizvodstva [Resource Saving Technologies of Construction of Bituminous Concrete Pavements Using Industrial Waste]. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Urbanistika [Proceedings of Perm National Research Polytechnic University. Urban Studies]. 2011, no. 2, pp. 60—69.
  19. Shi C., Qian J. High Performance Cementing Materials from Industrial Slag — a Review. Resource Conserve Recycle. 2000, vol. 29, pp. 195—207. DOI: http://dx.doi.org/10.1016/S0921-3449(99)00060-9.
  20. Wu S., Xu Y., Chen Q.Y. Utilization of Steel Slag as Aggregates for Stone Mastic Asphalt (SMA) Mixtures. Building and Environment, 2007, vol. 42, pp. 2580—2585.
  21. Pugin K.G., Vaysman Ya.I., Volkov G.N., Mal'tsev A.V. Otsenka negativnogo vozdeystviya na okruzhayushchuyu sredu stroitel'nykh materialov soderzhashchikh otkhody chernoy metallurgii [Estimation of the Negative Impact on the Environment of Construction Materials Containing Iron Industry Waste]. Sovremennye problemy nauki i obrazovaniya [Contemporary Problems of Science and Education]. 2012, no. 2 (40). Available at: http://www.science-education.ru/102-r5990.
  22. Pugin K.G. Voprosy ekologii ispol'zovaniya tverdykh otkhodov chernoy metallurgii v stroitel'nykh materialakh [The problems of the Ecology of Using Ferrous Hard Waste in Construction Materials]. Stroitel'nye materialy [Construction Materials]. 2012, no. 8, pp. 54—56.

Cкачать на языке оригинала

EFFECT PRODUCED BY THE TECHNOSPHERE ON THE POLLUTIONOF WATER BODIES IN RECREATION AREAS OF A MEGALOPOLIS

Вестник МГСУ 8/2013
  • Sorokin Aleksandr Valer'evich - Moscow State University of Machine Building (MAMI) postgraduate student, Department of Environmental Safety of Motor Transport, Moscow State University of Machine Building (MAMI), 38 B. Semenovskaya st., Moscow, 107023, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Sotnikova Elena Vasil’evna - Moscow State University of Machine Building (MAMI) Candidate of Chemical Sciences, Associate Professor, Department of Environmental Safety of Motor Transport, Moscow State University of Machine Building (MAMI), 38 B. Semenovskaya st., Moscow, 107023, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 123-130

This article contains a quantitative analysis of the content of heavy metals in soils, waters and sediments of the Verkhniy Kuz'minskiy pond in Moscow. This pond, coupled with other water bodies of the recreation area, represent a historical monument included into the UNESCO registrar. It is common practice to consider heavy metals and toxic elements as target research components. In most cases, these substances serve as the markers of the human activity. Besides, iron was also included into the list of target research components due to the possibility of the ferrocene admixture in the fuel. This decision was also substantiated by the data obtained on the basis of the analysis of samples of soil, water and benthal deposits of the Bol'shoy Troparevskiy Pond in Moscow. The quantitative analysis performed according to GOST 17.4.02—83 (State Standard 17.4.02—83) included elements of the ICP-MS technique. The variations factor was calculated for the heavy metals content in the soil, water and benthal deposits. Highly concentrated elements were found there. A comparison with the prior data on the content of the above components in the Bol'shoy Troparevskiy Pond was performed to identify patterns of distribution and accumulation of the components under research.

DOI: 10.22227/1997-0935.2013.8.123-130

Библиографический список
  1. El'bekyan K.S., Khodzhayan A.B., Gevandova M.G. Neblagopriyatnoe vozdeystvie na organizm tyazhelykh metallov kak ekologicheskogo faktora [Adverse Effect of Heavy Metals on the Human Organism as an Ecological Factor]. Izvestiya Samarskogo nauchnogo tsentra RAN [News of Samara Centre for Research of the Russian Academy of Sciences]. 2009, vol. 11, no. 1(6), pp. 1197—1199.
  2. Ulitsy Moskvy. Starye i novye nazvaniya: toponimicheskiy slovar'-spravochnik [Streets of Moscow. Old and New Names. Toponymical Reference Book]. Moscow, Nauka, Tekhnika, Obrazovanie Publ., 2003.
  3. Korobko M.Yu. Moskva usadebnaya: putevoditel' [Guide to Moscow Mansions]. Moscow, 2005.
  4. Korobko M.Yu. Moskovskiy Versal': Kuz'minki-Lyublino [Moscow Versailles: Kuz'minki-Lyublino]. Moscow, 2001, 126 p.
  5. Poretskiy N.A. Selo Vlakhernskoe [Vlakhernskoe Village]. Moscow, 1913; reprinted in Moscow, 2000.
  6. Ashrafb M.A., Maah M.J. and Yusoff I.B. Study of Water Quality and Heavy Metals in Soil & Water of Ex-Mining Area Bestari Jaya, Peninsular Malaysia. International Journal of Basic & Applied Sciences IJBAS-IJENS. Vol. 10, no. 03.
  7. Wedepohl K.H. Geochemie. Sammiung G?schen, Bd 1224-1224a/1224b, 1967. 220 p.
  8. Taylor S.R. Abundance of Chemical Elements in the Continental Crust; a New Table. Geochimica et Cosmochimica Acta 28(8): 1,273-1,285. doi: 10.1016/0016-7037(64)90129-2. 1964. Pp. 414—422.
  9. Vinogradov A.P. Zakonomernosti raspredeleniya khimicheskikh elementov v zemnoy kore [Regularities of Distribution of Chemical Elements in the Earth Crust]. Geokhimiya [Geochemistry]. 1956, no. 1, pp. 6—52.
  10. Vinogradov A. P. Srednie soderzhaniya khimicheskikh elementov v glavnykh tipakh izverzhennykh gornykh porod zemnoy kory [Average Content of Chemical Elements in Major Types of Erupted Rock in the Earth Crust]. Geokhimiya [Geochemistry]. 1962, no. 7, pp. 555—571.

Cкачать на языке оригинала

Methodological approaches to development and identification of the best available technologies on through the example use of ferrous slags

Вестник МГСУ 10/2013
  • Pugin Konstantin Georgievich - Perm National Research Polytechnic University (PNRPU) Candidate of Technical Sciences, Associate Professor, Department of Automobiles and Production Machines, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Vaysman Yakov Iosifovich - Perm National Research Polytechnic University (PNRPU) Doctor of Medical Sciences, Professor, Scientific Supervisor, Department of Environmental Protection, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 183-195

Metallurgy is an industry which causes great environmental stress. Ferrous waste used as the raw material in the building industry can lead to environmental pollution with heavy metals. The author offers a methodology of comparing different technologies of using the potential of waste in order to minimize the adverse influence of technology on the environment. The methodology is based on choosing the best available technologies accepted in the European Union.The methodological approaches to the development of new technologies of ferrous slag usage and identification of the existing ones were based on the concept of a complex ecosystem-based approach. The approach allows to estimate the required degree of acceptable environmental risks in the course of the implementation of a technology throughout the whole life cycle of waste: at the stage of its formation, generation of the desired product in the process of technological conversion by capturing the resource potential of waste, the use of the desired product by the consumer, and the expiry of the life cycle of a product (material) generated by the consumer from the desired product.The use of a complex ecosystem-based approach in the process of developing new technologies of slag usage and identifying the existing ones helps to judge if a technology allows achieving the following targets:technical feasibility of a technology in production quantities, on condition of achieving the degree of capturing the slag potential that complies with low-waste and wastefree categories of technological processes;the acceptable level of environmental security throughout the whole life cycle of theslag;generation of marketable end products of the pre-set quality, which exceeds thequality of other competing products;maximal prevention of the environmental damage by reducing the environmental stress on the environment and the population;availability of the technology in terms of finance and economy;social issues (new jobs, higher payments to budgets of all levels, improvement of the environmental and social image of a company, prevention of public protests as a result of favorable decisions for the protection of the environment).The proposed algorithm allows choosing the technology producing minimal environmental damage in order to maximize the economic attractiveness and technical feasibility.

DOI: 10.22227/1997-0935.2013.10.183-195

Библиографический список
  1. Leont'ev L.I. Net dal'neyshemu nakopleniyu tekhnogennykh otkhodov metallurgii [Say No to the Further Accumulation of Ferrous Waste]. Ekologiya i promyshlennost' Rossii [Ecology and Production Sector of Russia]. 2013, no. 1, pp. 2—3
  2. Grafkina M.V. Algoritm vybora optimal'nogo varianta razmeshcheniya promyshlennykh ob"ektov po geoekologicheskim kriteriyam [Algorithm for the Choice of the Optimal Option of Locating Industrial Facilities Based on Geological Criteria]. Estestvennye i tekhnicheskie nauki [Natural and Engineering Sciences]. 2008, no. 2, pp. 290—294.
  3. Grafkina M.V., Potapov A.D. Otsenka ekologicheskoy bezopasnosti stroitel'nykh sistem kak prirodno-tekhnogennykh kompleksov (teoreticheskie osnovy) [Estimating Ecological Security of Construction Systems as Natural and Anthopogenic Complexes]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2008, no. 1, pp. 23—28.
  4. Pugin K.G., Vaisman Y.I. Methodological Approaches to Development of Ecologically Safe Usage Technologies of Ferrous Industry Solid Waste Resource Potential. World Applied Sciences Journal, 2013, vol. 22, Special Issue on Techniques and Technologies, pp. 28—33.
  5. Koroleva E.B., Zhigiley O.N., Kryazhev A.M., Sergienko O.I., Sokornova T.V. Nailuchshie dostupnye tekhnologii: opyt i perspektivy [The Best Available Technologies: Experience and Prospects]. Saint Petersburg, 2011, 123 p.
  6. Davis B., Birch G. Spatial Distribution of Bulk Atmospheric Deposition of Heavy Metals in Metropolitan Sydney, Australia. Water Air Soil Pollution, 2011, no. 214, pp. 147—162.
  7. Gunawardena J., Egodawatta P., Ayoko G., Goonetilleke A. Role of Traffic in Atmospheric Accumulation of Heavy Metals and Polycyclic Aromatic Hydrocarbons. Atmospheric Environment. 2012, no. 54, pp. 502—510.
  8. Herngren L., Goonetilleke A., Ayoko G.A. Understanding Heavy Metal and Suspended Solids Relationships in Urban Stormwater Using Simulated Rainfall. Journal of Environmental Management. 2005, no. 76, pp. 149—158.
  9. Herngren L., Goonetilleke A., Ayoko, G.A. Analysis of Heavy Metals in Road-deposited Sediments. Analytica Chimica Acta. 2006, no. 571(2), pp. 270—278.
  10. Huston R., Chan Y.C., Gardner T., Shaw G., Chapman H. Characterisation of Atmospheric Deposition as a Source of Contaminants in Urban Rainwater Tanks. Water research. 2009, no. 43, 1630—1640.
  11. Pugin K.G., Volkov G.N., Mal'tsev A.V. Issledovanie vozmozhnosti pererabotki metallurgicheskikh shlakov v Permskom krae putem proizvodstva trotuarnoy plitki [Research into Possibility of Recycling of ferrous slags in the Perm Territory through Production of Paving Slab]. Fundamental'nye issledovaniya [Fundamental Researches]. 2013, no. 1—2, pp. 419—421.
  12. Pugin K.G. Voprosy ekologii ispol'zovaniya tverdykh otkhodov chernoy metallurgii v stroitel'nykh materialakh [The problems of the Ecology of Using Ferrous Hard Waste in Construction Materials]. Stroitel'nye materialy [Construction Materials]. 2012, no. 8, pp. 54—56.

Cкачать на языке оригинала

Mathematical modeling of the emission of heavy metals into water bodies from building materials derived from production waste

Вестник МГСУ 1/2016
  • Pugin Konstantin Georgievich - Perm National Research Polytechnic University (PNRPU) Candidate of Technical Sciences, Associate Professor, Department of Automobiles and Production Machines, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Vaysman Yakov Iosifovich - Perm National Research Polytechnic University (PNRPU) Doctor of Medical Sciences, Professor, Scientific Supervisor, Department of Environmental Protection, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Boyarshinov Mikhail Gennad’evich - Perm National Research Polytechnic University (PNRPU) Doctor of Technical Sciences, Professor, Department of Automobiles and Production Machines, Perm National Research Polytechnic University (PNRPU), 29 Komsomol’skiy prospekt, Perm, 614990, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 105-117

At the present time industrial waste is considered to be an alternative to primary natural resources when producing construction materials and products. The use of industrial waste in the construction branch allows reducing ecological load on the environment and population as a result of reducing the amount of unrecyclable waste and reducing the use of primary natural resources. Though when involving waste products as raw material in the preparation of building materials there occur environmental risks of anthropogenic impact increase on the environment. These risks are related to possible emission of heavy metals from construction materials in use. The article describes a tool which allows predicting this issue, depending on the acidity of the medium, the residence time of the material in the environment. The experimental data obtained in determining the migration activity of metals from cement concretes to aqueous solutions served as the basis for the mathematical model. The proposed model allows us to make a prediction of anthropogenic impact on the environment and commensurate this impact with the possibility of assimilation of the environment area where the building materials are applied. This will allow conducting an effective assessment of the created and applied technologies of waste disposal, taking into account the operating conditions of the materials produced.

DOI: 10.22227/1997-0935.2016.1.105-117

Библиографический список
  1. Dijkstra J.J., Meeusse J.C.L., Van der Sloot H.A., Comans R.N.J. A Consistent Geochemical Modelling Approach for the Reactive Transport of Major and Trace Elements in MSWI Bottom Ash. Appl. Geochem. 2008, no. 23 (6), pp. 1544—1562. DOI: http://dx.doi.org/10.1016/j.apgeochem.2007.12.032.
  2. Eikelboom E., Ruwiel E., Goumans J.J.J.M. The Building Materials Decree: An Example of a Dutch Regulation Based On the Potential Impact of Materials on the Environment. Waste Manage. (Oxford). 2001, no. 21 (3), pp. 295—302.
  3. Fthenakis V., Wang W., Kim C.H. Life Cycle Inventory Analysis of the Production of Metals Used in Photovoltaics. Renew. Sustain. Energy Rev. 2009, no. 13 (3), pp. 493—517. DOI: http://dx.doi.org/10.1016/j.rser.2007.11.012.
  4. Quintelas C., Rocha Z., Silva B. et al. Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) From Aqueous Solutions by an E. Coli Biofilm Supported on Kaolin. Chem. Engineering J. July 2009, 149, 1-3, pp. 319—324. DOI: http://dx.doi.org/10.1016/j.cej.2008.11.025.
  5. Jackobsen H., Kristoferrsen M. Case Studies on Waste Minimization Practices in Europe / Topic Report — European Topic Centre on Waste. European Environment Agency, February 2002, no. 2.
  6. Pugin K.G. Voprosy ekologii ispol’zovaniya tverdykh otkhodov chernoy metallurgii v stroitel’nykh materialakh [Ecological Problems of Iron Industry Solid Waste in Construction Materials]. Stroitel’nye materialy [Construction Materials]. 2012, no. 8, pp. 54—56. (In Russian)
  7. Pugin K.G., Vaisman Y.I. Methodological Approaches to Development of Ecologically Safe Usage Technologies of Ferrous Industry Solid Waste Resource Potential. World Applied Sciences Journal (Special Issue on Techniques and Technologies). Berlin, Springer, 2013, no. 22, pp. 28—33. DOI: http://dx.doi.org/10.5829/idosi.wasj.2013.22.tt.22135.
  8. Pugin K.G., Mal’tsev A.V. Issledovanie vozmozhnosti pererabotki metallurgicheskikh shlakov v Permskom krae putem proizvodstva trotuarnoy plitki [Investigation of the Possibilities of Smelter Slag Recycling in Perm Region by Producing Paving Flags]. Fundamental’nye issledovaniya [Fundamental Research]. 2013, no. 1—2, pp. 419—421. (In Russian)
  9. Kendall Alissa, Keoleian Gregory A., Lepech Michael D. Materials Design for Sustainability through Life Cycle Modeling of Engineered Cementitious Composites. Materials and Structures. 2008, vol. 41, no. 6, pp. 1117—1131. DOI: http://dx.doi.org/10.1617/s11527-007-9310-5.
  10. Bhander G.S., Christensen T.H., Hauschild M.Z. EASEWASTE — Life Cycle Modeling Capabilities for Waste Management Technologies. Int. J. Life Cycle Assess. 2010, 15,pp. 403—416.
  11. Gabler H.E., Gluh K., Bahr A., Utermann J. Quantification of Vanadium Adsorption by German Soils. J. Geochem. Explor. 2009, 103 (1), pp. 37—44. DOI: http://dx.doi.org/10.1016/j.gexplo.2009.05.002.
  12. Pugin K.G. Tyazhelye metally v otkhodakh chernoy metallurgii [Heavy Metals in Iron Industry Waste]. Molodoy uchenyy [Young Scientist]. 2010, no. 5—1, pp. 135—139. (In Russian)
  13. Batrakova G.M., Boyarshinov M.G., Goremykin V.D. Model’ dlya rascheta rasseivaniya emissii s territorii zakhoroneniya tverdykh bytovykh otkhodov [Calculation Model of Emission Dissipation from the Territory of Household Solid Waste Disposal]. Geoinformatika [Geoinformatics]. 2005, no. 2, pp. 43—49. (In Russian)
  14. Batrakova G.M., Boyarshinov M.G., Tashkinova I.N. Metodika matematicheskogo modelirovaniya biorazlozheniya nitrobenzola i anilina v pochve [Methods of Mathematical Simulation of Biodeterioration of Nitrobenzene and Aniline in the Ground]. Fundamental’nye issledovaniya [Fundamental Research]. 2014, no. 12—9, pp. 1855—1861. (In Russian)
  15. Balabanov D.S., Boyarshinov M.G. Rasseyanie otrabotannykh gazov avtotransporta nad gorodskoy territoriey [Dissipation of Exhaust Gas from Motor Transport over City Territory]. Saarbrucken, LAMBERT Academic Publishing, 2012, 120 p. (In Russian)
  16. Fedosov S.V., Rumyantseva V.E., Khrunov V.A., Aksakovskaya L.N. Modelirovanie massoperenosa v protsessakh korrozii betonov pervogo vida (malye znacheniya chisla Fur’e) [Simulating Mass Transfer in the Process of Concretes Corrosion of the First Type (Small Values of Fourier Number)]. Stroitel’nye materialy [Construction Materials]. 2007, no. 5,pp. 70—71. (In Russian)
  17. Fedosov S.V., Rumyantseva V.E., Kas’yanenko N.S., Krasil’nikov I.V. Teoreticheskie i eksperimental’nye issledovaniya protsessov korrozii pervogo vida tsementnykh betonov pri nalichii vnutrennego istochnika massy [Theoretical and Experimental Investigations of the Corrosion Processes of the First Type of Cement Concretes with the Availability of Internal Mass Source]. Stroitel’nye materialy [Construction Materials]. 2013, no. 6, pp. 44—47.(In Russian)
  18. Kayumov R.A., Fedosov S.V., Rumyantseva V.E., Khrunov V.A., Manokhina Yu.V., Krasil’nikov I.V. Matematicheskoe modelirovanie korrozionnogo massoperenosa geterogennoy sistemy «zhidkaya agressivnaya sreda — tsementnyy beton». Chastnye sluchai resheniya [Mathematical Simulation of Corrosion Mass Transfer of the Heterogeneous System “Liquid Aggressive Media — Cement Concrete”. Common Solution Cases]. Izvestiya Kazanskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta [Kazan State University of Architecture and Engineering News]. 2013, no. 4 (26), pp. 343—348. (In Russian)
  19. Fedosov S.V., Rumyantseva V.E., Kas’yanenko N.S. Fiziko-khimicheskie osnovy zhidkostnoy korrozii vtorogo vida tsementnykh betonov [Physical and Chemical Foundations of Fluid Corrosion of the Second Type of Cement Concretes]. Stroitel’stvo i rekonstruktsiya [Construction and Reconstruction]. 2010, no. 4 (30), pp. 74—77. (In Russian)
  20. Korn G., Korn T. Spravochnik po matematike [Reference Book on Mathematics]. 4th edition. Moscow, Nauka Publ., 1977, 832 p. (In Russian)

Скачать статью

Результаты 1 - 4 из 4