DESIGNING AND DETAILING OF BUILDING SYSTEMS. MECHANICS IN CIVIL ENGINEERING

IDENTIFICATION OF WIND LOAD APPLIED TO THREE-DIMENSIONAL STRUCTURES BY VIRTUE OF ITS SIMULATION IN THE WIND TUNNEL

Вестник МГСУ 7/2012
  • Doroshenko Sergey Aleksandrovich - Moscow State University of Civil Engineering (MSUCE) postgraduate student, Department of Theoretical Mechanics and Aerodynamics, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Doroshenko Anna Valer'evna - Moscow State University of Civil Engineering (MSUCE) postgraduate student, Department of Informatics and Applied Mathematics, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Orekhov Genrikh Vasil'evich - Moscow State University of Civil Engineering (MSUCE) Candidate of Technical Sciences, Associated Professor, Head of Laboratory of Aerodynamic and Acoustic Testing of Building Structures, Moscow State University of Civil Engineering (MSUCE), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 69 - 74

The authors discuss wind loads applied to a set of two buildings. The wind load is simulated with the help of the wind tunnel.
In the Russian Federation, special attention is driven to the aerodynamics of high-rise buildings and structures. According to the Russian norms, identification of aerodynamic coefficients for high-rise buildings, as well as the influence of adjacent buildings and structures, is performed on the basis of models of structures exposed to wind impacts simulated in the wind tunnel. This article deals with the results of the wind tunnel test of buildings. The simulation was carried out with the involvement of a model of two twenty-three storied buildings. The experiment was held in a wind tunnel of the closed type at in the Institute of Mechanics of Moscow State University.
Data were compared at the zero speed before and after the experiment. LabView software was used to process the output data. Graphs and tables were developed in the Microsoft Excel package. GoogleSketchUp software was used as a visualization tool.
The three-dimensional flow formed in the wind tunnel can't be adequately described by solving the two-dimensional problem. The aerodynamic experiment technique is used to analyze the results for eighteen angles of the wind attack.

DOI: 10.22227/1997-0935.2012.7.69 - 74

Библиографический список
  1. Simiu E., Scanlan R. Vozdeystvie vetra na zdaniya i sooruzheniya [Wind Effects on Structures]. Moscow, Stroyizdat Publ., 1984, 360 p.
  2. Savitskii G.A. Vetrovaya nagruzka na sooruzheniya [Wind Loads Applied to Structures]. Moscow, 1972, 110 p.
  3. Berezin M.A., Katyushin V.V. Atlas aerodinamicheskikh kharakteristik stroitel’nykh konstruktsiy [Atlas of Aerodynamic Characteristics of Building Structures]. Novosibirsk, Olden-Poligrafiya Publ., 200 p.
  4. Doroshenko S.A. Eksperimental’noe opredelenie vetrovogo vozdeystviya na ploskie elementy stroitel’nykh konstruktsiy [Experimental Identification of Wind Effects on Plane Building Elements]. Fundamental’nye nauki v sovremennom stroitel’stve, 7th scientific and practical conference. [Proceedings of the Seventh All-Russian Scientific and Practical Conference “Fundamental Sciences in Contemporary Civil Engineering”]. Moscow, MSUCE, 2010, pp. 175—179.

Cкачать на языке оригинала

INVESTIGATION OF RANDOM WIND LOAD IMPACTS ON THE FRAMEWORK OF A SINGLE STOREY INDUSTRIAL BUILDING

Вестник МГСУ 9/2016
  • Zolina Tat’yana Vladimirovna - State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU") Candidate of Technical Sciences, Professor, First Vice-rector, State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU"), 18 Tatishcheva str., Astrakhan, 414000, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Sadchikov Pavel Nikolaevich - State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU") Candidate of Technical Sciences, Associate Professor, Department of Automated Design and Modeling Systems, State Autonomous Educational Institution of the Astrakhan area of higher education "Astrakhan State Architectural and Construction University" (JSC GAOU VPO "AGASU"), 18 Tatishcheva str., Astrakhan, 414000, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 15-25

Geometrical characteristics of obstacles on the ground, which determine the roughness of the terrain, cause the air flow turbulence. The friction level of air flow on the surface depends on the height and density of the location of obstacles, which determines the magnitude and direction of the load on a corresponding specific object. Any obstacle located in the way of the turbulent flow experiences a corresponding wind load. In the given study we have considered a multi-span one-storey industrial building as an obstacle. In order to estimate the load on the object of study caused by the wind, we decomposed the corresponding load into two components: middle and fluctuating. The first one shows the static wind load characteristics estimated according to the territorial division into districts of the Russian Federation, where the areas of calculated values of wind pressure are exhibited. Their distribution is the result of the implementation of the probabilistic model presented in the form of non-stationary random field of wind flow speeds. In order to obtain calculated values and automated processing of the value of wind load on the surface of an industrial building under blow the profiles of wind flow velocities at different heights were approximated. The resulting functional dependency on the heights is of a distinct power character. In order to describe the dynamic parameters of the process, presented in the form of the fluctuating component of wind load and the resulting reactions of structural elements of the building, we considered the random functions according to the time parameter. They represent the energy spectrum of the proportion of the wind flow power, attributable to an infinitesimal frequency band. The set of reciprocal spectral densities when selecting the points in space, each of which determines the correlation degree between the states of a random process, has allowed establishing the magnitude of the correlation coefficient of wind pressure pulsations to the entire surface of the building. When studying wind load impact on the operation of an industrial building framework, the corresponding response elements of the system are defined separately from the effects of the average and the sum of pulsation components. The combined effect which corresponds to the most unfavorable load value is achieved in case of coincidence of their signs. The present approach to the assessment of the forces caused by wind and the response to them on the part of the object became the basis of the calculation methodology as one of the components of the generalized load on the object of study.

DOI: 10.22227/1997-0935.2016.9.15-25

Cкачать на языке оригинала

Результаты 1 - 2 из 2