SAFETY OF BUILDING SYSTEMS. ECOLOGICAL PROBLEMS OF CONSTRUCTION PROJECTS. GEOECOLOGY

Area balance method for calculation of air interchange in fire-resesistance testing laboratory for building products and constructions

Вестник МГСУ 8/2014
  • Sargsyan Samvel Volodyaevich - Moscow State University of Civil Engineering (MGSU) Candidate of Technical Sciences, Associate Professor, Department of Heating and Ventilation, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .
  • Spirin Aleksandr Dmitrievich - Moscow State University of Civil Engineering (MGSU) Master’s Degree Student, Department of Heating and Ventilation, Moscow State University of Civil Engineering (MGSU), 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript .

Страницы 127-135

Fire-resistance testing laboratory for building products and constructions
is a production room with a substantial excess heat (over 23 W/m3). Significant sources of heat inside the aforementioned laboratory are firing furnace, designed to simulate high temperature effects on structures and products of various types in case of fire development. The excess heat production in the laboratory during the tests is due to firing furnaces.
The laboratory room is considered as an object consisting of two control volumes (CV), in each of which there may be air intake and air removal, pollutant absorption or emission.
In modeling air exchange conditions the following processes are being considered: the processes connected with air movement in the laboratory room: the jet stream in a confined space, distribution of air parameters, air motion and impurity diffusion in the ventilated room.
General upward ventilation seems to be the most rational due to impossibility of using local exhaust ventilation. It is connected with the peculiarities of technological processes in the laboratory.
Air jets spouted through large-perforated surface mounted at the height of 2 m from the floor level, "flood" the lower control volume, entrained by natural convective currents from heat sources upward and removed from the upper area.
In order to take advantage of the proposed method of the required air exchange calculation, you must enter additional conditions, taking into account the provision of sanitary-hygienic characteristics of the current at the entrance of the service (work) area.
Exhaust air containing pollutants (combustion products), is expelled into the atmosphere by vertical jet discharge. Dividing ventilated rooms into two control volumes allows describing the research
process in a ventilated room more accurately and finding the air exchange in the
lab room during the tests on a more reasonable basis, allowing to provide safe
working conditions for the staff without the use of PPE.

DOI: 10.22227/1997-0935.2014.8.127-135

Библиографический список
  1. Titov V.P., Sargsyan S.V. Universal'naya dvukhzonnaya model' pomeshcheniya dlya rascheta trebuemogo vozdukhoobmena [General Two Area Model for Computation of the Required Air Exchange]. Penza, 1991, pp. 71—75.
  2. Sargsyan S.V. Kriterii dlya vybora ratsionalnoy skhemy organizatsii vozdukhoobmena [Criteria for Selecting Effective Scheme of Air Exchange]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2011, no. 7, pp. 341—345.
  3. Sargsyan S.V. Optimizatsiya trebuemogo vozdukhoobmena v teplonapryazhennykh pomeshcheniyakh s primeneniem poverkhnostnykh vozdukhookhladiteley [Optimization of Demanded Air Exchange in Heat-stressed Rooms with Application of Superficial Air Coolers]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, Special issue no. 2, pp. 456—460.
  4. Rymarov A.G., Savichev V.V. Osobennosti formirovaniya gazovogo rezhima pomeshcheniya pri rabote istochnika gazovogo vydeleniya v zavisimosti ot vozdukhopronitsaemosti naruzhnogo ograzhdeniya [Formation Features of a Gas Mode of a Room During the Work of a Source of Gas Allocation Depending on Air Permeability of an External Protection]. Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering]. 2009, Special issue no. 1, pp. 482—485.
  5. Rymarov A.G. Prognozirovanie parametrov vozdushnogo, teplovogo, gazovogo i vlazhnostnogo rezhimov pomeshcheniya zdanya [Forecasting of the Parameters of Air, Thermal, Gas and Moist Modes of a Room of a Building]. Academia. Arkhitektura i stroitel'stvo [Academia. Architecture and Construction]. 2009, no. 5, pp. 362—364.
  6. Titov V.P., Ozerov V.O. A.s. 1112192 A SSSR. Sistema ventilyatsii tsekhov. № 3374643/29-06; zayavl. 04.01.82; opubl. 97.09.84. Byul №13 [Author's Certificate 1112192 A USSR. System of Ventilation of Manufactories. № 3374643/29-06; report. 04.01.82; publ. 97.09.84. Bulletin №13]. 1984, 3 p.
  7. Rymarov A.G. Primenenie teorii istochnikov i stokov i kompleksnogo potentsiala techeniya v metode rashcheta polya skorostey vozdukha v pomeshchenii [Application of the Theory of Sources and Drains and Complex Capacity of the Current in a Method of Calculating a Field of Air Speeds Indoors]. Izvestiya vuzov. Stroitel'stvo. [News of the Institutions of Higher Education. Construction]. 2000, no. 11, pp. 66—69.
  8. Titov V.P. Peretekanie vozdukha mezhdu pomeshcheniyami zdaniya [Air Overflowing Between Building Rooms]. Ekonomiya energii v sistemakh otopleniya, ventilyatsii i konditsionirovaniya vozdukha [Energy Saving in Heating, Ventilation and Air Conditioning Systems]. Moscow, MISI Publ. 1985, pp. 141—148.
  9. Bunn R. Cruise Control. CIBSE Building Services Journal. June 1996, no. 6, pp. 31—33.
  10. Brister A. A Quest for Knowledge. CIBSE Building Services Journal. April 1996, vol. 18, no. 4, pp. 42—47.
  11. Brown F. Low Energy Takes Flight. CIBSE Building Services Journal. March 1996, no. 3, pp. 48—53.
  12. Brister A. Sound Engineering. CIBSE Building Services Journal. August 1996, no. 8, pp. 62—65.
  13. Briganti A. Il Condizionamento dell'Aria. Milano, Tecniche Nuove Edizioni, 2006, 944 p.
  14. Werner Roth H. From Ceiling Downwards. CIBSE Building Services Journal. July 1992, no. 7, pp. 25—32.
  15. Appleby P. Displacement Ventilation: a Design Guide. Building Services Journal (CIBSE). April 1989, no. 4, pp. 52—55.

Скачать статью

Результаты 1 - 1 из 1